

Al-Kindy College Medical Journal (KCMJ)

Review Article

The Role of Brain-Derived Neurotrophic Factor in Different Psychiatric Disorders and **Neurodegenerative Diseases**

Suzan A. Hamza^{1*}, Namir I. A. Haddad¹, Gheyath AL Gawwam²

- Department of Chemistry, College of Science, University of Baghdad, Baghdad, Iraq.
- Department of Neurology, College of Medicine, University of Baghdad, Baghdad, Iraq.
 - * Corresponding author's email: suzan.adnan@sc.uobaghdad.edu.iq.

ABSTRACT

Article history: Received 3 February 2025 Accepted 20 April 2025 Available online 1 December 2025

DOI: 10.47723/34cyc985

Keywords: Neurotrophins; BDNF; CNS; Psychiatric Disorders; Neurodegenerative

Diseases.

This article is an open access article distributed under the

terms and conditions of the Creative Commons Attribution (CC BY) license

http://creativecommons.org/licenses/by/4.0/

Brain-derived neurotrophic factor is a widely studied neurotrophins found throughout the mammalian central nervous system. These neurotrophins regulate numerous aspects of neuronal and oligodendroglia development and function, including axonal growth, synaptic plasticity, differentiation, proliferation, survival, and apoptosis. Brain-derived neurotrophic factors have a significant impact on neurodegenerative disorders, synaptic plasticity, and the formation and maintenance of a normal brain circuit. Precise regulation of Brain-derived neurotrophic factor concentrations, including their controlled release at the transcriptional and translational levels, is essential for the correct functioning of the central nervous system. This review provides a summary of the role of Brain-derived neurotrophic factor in various neurological and mental disorders. In addition, to its role in memory recognition by increasing neuronal proliferation and survival in the perirhinal cortex, a vital area for recognizing objects in memory.

Introduction

Several polypeptide factors are essential for neuronal plasticity, survival, neurite outgrowth, and differentiation, and one of these is brain-derived neurotrophic factor (BDNF) 1. Multiple mammalian studies have focused on BDNF because of the multiple cellular processes it controls in oligodendroglia cells and neurons during development and maturation, such as differentiation, proliferation, survival, axonal growth, and synaptic plasticity ². Two regions of the central nervous system (CNS) that contain high concentrations of the neurotrophins neuron growth factor (NGF) include the hippocampus and the prefrontal cortex (PFC). The precursor pro-BDNF can be stored in axons and dendrites and then transformed into BDNF during synthesis. The last BDNF protein is generated via cleavage, which might take either within or outside of cells. Furthermore, exercise determines whether pro-BDNF and mature BDNF are released ^{3, 4}. Neurons, which can be in several parts of the brain, including the cerebellum, striatum, hippocampus, amygdala, and cortex, are the principal cellular sources of BDNF. The immune system cells that express and secrete BDNF include microglia, astrocytes, endothelial cells, and megakaryocytes. Because the blood-brain barrier is permeable in both directions, BDNF can be released into the bloodstream from both peripheral and cerebral sources. Research in both animals and humans has shown that BDNF levels in the blood correlate with brain BDNF levels ⁵⁻⁸. Because there is significant control over BDNF expression, even healthy people can have widely varying BDNF levels. Variations in BDNF expression have been linked to both normal and abnormal ageing and mental diseases, particularly in sections of the brain critical for memory processes, like the hippocampus and para hippocampal regions ⁴. Several neurodegenerative diseases have been linked to altered BDNF levels and signaling pathways ⁹. With the greatest concentrations seen in the frontal cortex and hippocampus, the major effort was investigating the BDNF effects on the CNS. Recent research have demonstrated that BDNF exists in various peripheral organs, including the kidneys, spleen, heart, intestines, thymus, and lungs ^{10,11}.

Synthesis and expression of BDNF

There are numerous steps involved in the synthesis and maturation of BDNF, and the production of different precursor isoforms is one of them. A protein of 247 amino acids, BDNF has been well-preserved. It is produced and shaped in the endoplasmic reticulum as pre-pro-BDNF, weighing between 32 and 35 kilodaltons. After being transported to the Golgi apparatus, the signal sequence of the pre-region is quickly removed, resulting in the formation of the isoform pro-BDNF (28–32 kDa). The pro-BDNF undergoes further cleavage to produce the mature isoform (mBDNF, 13 kDa). The pro-BDNF and m-BDNF isoforms together are secreted into the extracellular space, Figure (1) ¹².

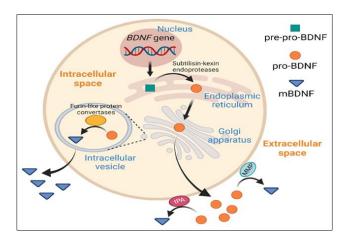


Figure 1: Synthesis of pro-BDNF and mature BDNF (mBDNF).

The pro-BDNF can undergo conversion by metalloproteinases 2 and 9, plasmin, and extracellular proteases ¹³. Both the neuronal and non-neuronal cells express the secretory protein BDNF. In neuronal cells, the BDNF immuno-reactivity was found in numerous regions of the central nervous system in addition to the peripheral and enteric nervous system ¹⁴⁻¹⁸. In non-neuronal tissue, the BDNF is synthesized in cells of the immune system, like T cells, B cell and monocytes, muscle cells, thymus, heart, liver and spleen ¹⁹⁻²¹.

The expression of BDNF in various tissues is controlled during development. Moreover, both normal and abnormal physiological states, along with interventions like physical activity, low oxygen levels, psychological stress, epileptic convulsions, and reduced blood flow, enhance the production of BDNF in specific tissues ²²⁻²⁵.

The human BDNF gene exists on chromosome 11p14.1 and comprises 11 exons (I-XI) and 9 promoters. These promoters control the developmental and regional production of several alternatively spliced mRNA isoforms. The BDNF precursor protein's main coding sequence is found only in exon IX, located at the 3' end of the gene locus ²⁶. The coding sequence of BDNF is translated into a pre-proprotein, which contains an N-terminal pre-domain that directs the mRNA to the rough endoplasmic reticulum (rER) the pre-sequence cleaves co-translationally, synthesizing the immature un-cleaved pro-BDNF protein in the ER. The transcription of the BDNF gene into different mRNA variants is closely controlled by the increase in Ca2+ levels generated by electrical activity in neurons ²⁷. The unique mRNA variations can be carried into dendrites, where localized synthesis and release of BDNF can be limited to particularly active sections of the dendrites, thus enhancing synaptic plasticity in a manner that relies on BDNF. Because of this, BDNF may precisely shape maturing and growing synaptic networks through activitydependent local synthesis and secretion 28 .

Secretion of BDNF

To carry out its functions, BDNF requires secretion via the appropriate cell type at the correct time and location. In contrast to other growth factors, mostly released through a continuous process, the newly produced BDNF is directed towards a controlled pathway that relies on neuronal activity and Ca²⁺ -dependent signaling ²⁹⁻³¹. Once synthesized, BDNF is held in dense core vesicles (DCVs) until it is released in response to an increase in cytoplasmic Ca²⁺levels, which acts as a stimulus for the process. Two sources can raise a concentration of Ca²⁺ to trigger the release of BDNF: the Ca²⁺ outside the cell and the Ca2+ inside various organelles. While the release of BDNF activated by glutamate in brain slices or primary neuronal cultures relies on the release of Ca²⁺ from internal Ca²⁺ reserves, the secretion of BDNF in response to action potential is contingent upon external Ca²⁺ 32-34. After being released, BDNF and pro-BDNF attach to two different groups of receptors. Initially, brain-derived neurotrophic factor (BDNF) forms a strong connection with a specific member of the tropomyosin receptor kinase family, known as the TrkB receptor. This is a protein that spans across the cell membrane and could add phosphate groups to tyrosine residues, a process known as tyrosine kinase activity. This protein triggers the activation of three signaling pathways, namely Ras/Rap-MAPK, PI3K-AKT, and PLCg-PKC cascades, the activation of these cascades occurs in a liganddependent manner, meaning that it requires the presence of the ligand 35-37. However, pro-BDNF, along with further pro-neurotrophins and neurotrophins, interacts with the p75NTR receptor, which is a dimerization member of the tumor necrosis factor receptor (TNFR) superfamily. The BDNF-TrkB pathway plays a crucial role in controlling and synchronizing several cellular functions, including the survival, growth, and differentiation of neurons during development, activity-dependent changes in the strength of connections between neurons, and the processes involved in memory and learning in the mature central nervous system 38,39.

Neuronal cells are the most extensively studied among those capable of secreting BDNF. However, numerous findings suggest that

astrocytes and microglia can secrete BDNF to ⁴⁰. Bones and muscles play a crucial role in the secretion of peripheral BDNF; since resistance training induces more significant stress on bones and muscles, leading to increased expression of BDNF in peripheral tissues. This BDNF is then transported to the brain through the bloodstream and affects the brain after crossing the blood-brain barrier ^{23, 24}. BDNF secretion is regulated by various stimuli, including neuronal electrical activity, such as depolarization caused by increased extracellular concentration of K+, high-frequency stimulation (HFS), or theta-burst stimulation (TBS). Additionally, neuropeptides (neurotrophins, CGRP) and diverse compounds (glutamate, ATP, capsaicin, adenosine) also play a role in controlling BDNF secretion ⁴⁰.

Essential role of BDNF in Brain

Multiple studies provide evidence for the essential function of BDNF signaling in both normal and abnormal learning and memory processes 41,42. The neuro-protective properties of brain-derived neurotrophic factors (BDNF) have been extensively demonstrated in the hippocampus, a cerebral area primarily implicated in cognitive processes such as learning and memory. Memory and learning are both improved when BDNF TrkB signaling sets off a cascade of intracellular procedures that activate many signaling pathways. Among these processes are the following: neuronal survival, synaptic formation, and neuronal generation 43-45. The formation and maintenance of long-term memories are both impacted by BDNF. The reason behind this is because it can alter the strength of neuronal connections through binding to receptors on the membrane of neuronal cells and release in reaction to neural activity 46. In addition, fluctuations in synaptic connections and a rise in dendritic spine number, size, and complexity are known to facilitate long-term potentiation (LTP) and memory retention ⁴⁷. By regulating the structural changes involved in spatial and recognition memory processes, the proteins produced by the BDNF-TrkB signaling pathway significantly contribute to improved memory functions. In addition, research has shown that BDNF is essential for the maturation of memory recognition skills because it promotes the neurons growth and survival in the perirhinal cortex, an area of the brain that is fundamental for recalling specific objects from memory 48.

Role of BDNF in some Psychiatric Disorders and Neurodegenerative Diseases

BDNF is a promising biomarker currently being considered for its potential significance in diagnosing and treating neurodegeneration. Multiple methodologies have been examined to assess the potential use of BDNF as a biomarker in neurodegenerative disorders that demand decision-making in clinical practice. BDNF has been recognized as a potential biomarker that can be found in the bloodstream and used to indicate the presence of schizophrenia, depression, and neurodegenerative disorders. Although numerous experimental investigations validate its significance as a marker for the development of various diseases, there are limited papers detailing strategies to establish the possibility of using it as a clinical prognostic indicator. One approach quantifies BDNF levels in different biological samples, such as blood, cerebrospinal fluid, or post-mortem

brain tissue. Changes in serum levels of BDNF have been observed in epilepsy, mental disorders, and neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease, and multiple sclerosis 49.50.

Role of BDNF in Depression

The complex and varied nature of depressive disorder has led to various hypotheses regarding its pathogenesis, which is still not fully understood. A protein crucial for neuroplasticity, synaptic transmission, and neuronal survival, brain-derived neurotrophic factor (BDNF) has been the center of intense research within the neurotrophic hypothesis 51,52. Evidence suggests that decreased BDNF expression in important brain areas, like the hippocampus and prefrontal cortex, may contribute to the development of depressive symptoms 53,54, and BDNF level changes have been linked to the pathophysiology of depression. According to proponents of the neurotrophic hypothesis, depression is associated with larger processes of neuronal shrinkage and synaptic loss, and the pathophysiology of the condition revolves around the hypo regulation of BDNF and the ensuing impairment of neuroplasticity 55. In line with this theory, multiple investigations have shown that depressed individuals' blood BDNF levels are lower than those of healthy controls. Plasma BDNF levels and depression severity had an inverse relationship, and the intervention substantially raised BDNF levels. Also, there was an inverse relationship between the two variables as well as between the two changes in BDNF levels and depression severity 56, 57. Suárez-Cuenca et al. found that higher plasma BDNF levels before hemodialysis reduces the risk of mild depression in patients with CKD under renal replacement therapy 58. Also, in comparison to the non-diabetic controls, type 2 diabetics showed low levels of brain-derived neurotrophic factor (BDNF) and a high burden of depression. A substantial decrease in BDNF levels was linked to severe depression in type 2 diabetic individuals ⁵⁹.

The exact implications of the reduced BDNF levels in depression are still uncertain. The impermanent correlation between serum BDNF levels and the antidepressant effect tends to be indirect. Both ketamine and Electroconvulsive therapy progressively rise serum BDNF levels, whereas their antidepressant impact is observed to occur rapidly at ⁶⁰. Two investigations have demonstrated a decline in brain-derived neurotrophic factor (BDNF) levels in platelets of patients diagnosed with major depressive disorder (MDD) 61,62. A separate study demonstrated a substantial drop in platelet BDNF levels compared to the control group. The BDNF levels were brought back to a normal state by using SSRIs treatment, as compared to the control group ⁶³. Collectively, these investigations provide compelling evidence that fluctuations in serum levels of BDNF indicate modified BDNF secretion from blood platelets. Therefore, due to the resemblances in the control of BDNF synthesis in megakaryocytes and neurons, there may be similarities between the brain, BDNF in the bloodstream, and its release. However, a decrease in the expression of BDNF and TrkB has been seen in the hippocampus and prefrontal cortex of postmortem brain tissues of individuals who died by suicide 64,65. Furthermore, multiple meta-analyses have provided evidence supporting the link between the Val66Met polymorphism and an elevated vulnerability to developing mood disorders ^{66–68}.

Finally, a report demonstrated that individuals who had the Met allele of the BDNF gene have a higher propensity to develop depression ⁶⁹. Depression is thought to be caused by a disturbance in the transmission of serotonin signals in the brain. Modifications in synaptic serotonin concentrations and receptor numbers are linked with modified synaptic plasticity and neurogenesis ^{70, 71}.

Role of BDNF in Schizophrenia

Schizophrenia is a complicated mental condition that affects approximately 1 in 222 adults, corresponding to a prevalence rate of 0.45% 72. The condition has a global impact due to its chronic nature, significant alterations in personality, and impairments in cognitive functions such as working memory, attention, and executive function. These factors lead to a decreased quality of life and a high rate of disability among patients 73. Cognitive impairments in individuals with chronic schizophrenia have been associated with several factors, such as the intensity of psychotic symptoms, age, medication, and levels of BDNF. Atake *et al.* conducted a study to examine the relationships between these characteristics in a cohort of patients 74. They observed that the levels of BDNF in the blood were positively connected with working memory, attention, processing speed, motor performance, and executive function.

A new meta-analysis, which examined 21 studies including a total of individuals with schizophrenia-spectrum investigated the association between BDNF levels and cognitive impairment in schizophrenia. The findings revealed a slight but substantial correlation between BDNF levels and cognitive functioning. When considering cognitive abilities, there was a substantial correlation between BDNF levels and performance in verbal memory, working memory, processing speed, and verbal fluency 75. Ahmed et al. conducted two distinct meta-analyses, examining both the BDNF gene and its levels. The first study examined the correlation between the Val66Met polymorphism and neuro-cognition in individuals diagnosed with schizophrenia. The outcomes indicated no significant difference between the genotype groups regarding most neurocognitive domains. In the second study, the researchers examined the relationship between cognition and the peripheral expression of BDNF. They discovered small but significant associations between reasoning and problem-solving aspects ^{76,77}. Male patients diagnosed with schizophrenia have exhibited inferior performance on specific assessments measuring immediate and delayed memory in comparison to their female counterparts. Consequently, the male patients have exhibited lower BDNF levels than the female patients ⁷⁸. Peripheral levels of BDNF can serve as a valuable biomarker for assessing cognitive function in individuals with schizophrenia. These levels can be easily measured from a blood sample, specifically from plasma or serum. Furthermore, they have the potential to fluctuate during different stages of the illness and in response to various pharmacological and non-pharmacological treatments 79.

Role of BDNF in Alzheimer disease

One of the biggest problems that healthcare systems are facing is the increasing prevalence of AD among the elderly. There are about 50 million individuals worldwide who are thought to have dementia, with 22% of those aged 50 and above experiencing AD dementia, AD prodromal dementia, and AD preclinical dementia 80. The development of AD involves multiple factors, but a crucial role is played by the buildup of ß amyloid (Aß) deposits in the brain as senile plaques, together with the presence of over-phosphorylated tau protein in the form of neurofibrillary tangles 81,82. Previously, it was widely assumed that the buildup of Aß was responsible for triggering and speeding up the progression of the disease, but it was thought to be unrelated to the tau protein. On the other hand, recent findings indicate that these two processes are interconnected and work together in a mutually beneficial way 81. In their thesis on the pathophysiology of AD, Busche et al. discuss the synergistic effect of AB and tau protein, known as Aß-tau synergy. They highlight that the specific mechanism underlying these interactions remains unclear. The authors fail to acknowledge the potential influence of BDNF, which we believe deserves attention 81. BDNF's involvement in the development of AD seems to be multifaceted. BDNF depletion is linked to higher levels of tau phosphorylation, AB accumulation, neuro-inflammation, and neuronal death 83.

A limited number of meta-analyses have validated the role of BDNF in the progression of AD. Two separate meta-analyses conducted by Qin et al. and Ng et al. demonstrated that individuals with AD exhibited reduced BDNF in their blood compared to the control group 83,84. Due et al. showed that BDNF is reduced in the blood, cerebrospinal fluid, hippocampus, and cortex of patients with AD85. From a clinical perspective, it is necessary to identify an AD biomarker that is highly responsive to diagnose the disease in its early stages, prior to the onset of clinical symptoms. Additionally, this biomarker should be fast and non-invasive. Consequently, researchers have shown interest in Brain-Derived Neurotrophic Factor (BDNF) 86. Ng et al. disproved these hopes by showing that the decline in peripheral BDNF concentration is only observed in the advanced stage of AD. This decrease is likely a result of the prior increase in BDNF secretion, which is part of the compensatory and neuroprotective mechanism. Only when these mechanisms are exhausted does the decrease in BDNF levels in the blood occur 84 . Xie et al. questioned the use of BDNF as a marker for detecting AD or moderate cognitive impairment (MCI), which is a transitional stage between normal aging and dementia, in their meta-analysis. The researchers moreover demonstrated that AD is linked to reduced concentrations of peripheral BDNF. However, study of the ROC curve indicated that peripheral BDNF concentrations may not be an ideal biomarker for diagnosing AD or MCI due to its lower AUC, lower sensitivity, and poor specificity 87.

Role of BDNF in Multiple Sclerosis

Multiple Sclerosis (MS) is a prevalent autoimmune disorder characterized by inflammation and degeneration of the central nervous system (CNS). This leads to the loss of myelin and the gradual buildup of impairment over time. It is predominantly found in the northern hemisphere and has a higher incidence in women than men. The typical age range for patients diagnosed with multiple sclerosis is often around 20 and 45 years old. Furthermore, the condition is more frequently observed in younger people. Remarkably, studies have consistently shown that the overall

occurrence and the predominance of females have steadily risen over the past few decades ⁸⁸⁻⁹⁰. Multiple sclerosis likely has a complex etiology that includes a wide range of factors, including genetics and the environment. The brain-derived neurotrophic factor role in controlling neuroinflammation and promoting neuroprotection has led to substantial research into BDNF in multiple sclerosis (MS). In mouse models, it has been shown to increase myelin protein production, oligodendrocyte lineage cell development, and neuronal recovery from damage or deterioration, and axon growth 91-93. Research comparing people with MS to those without the disease has shown conflicting findings on the variations in blood BDNF levels. Some research found higher levels, while others found reduced levels 94,95. Both the duration of the illness and the method of testing may impact on the variability in results, according to certain publications ⁹⁶. New research shows that during the relapse phase, BDNF concentrations rise in those with relapsing-remitting multiple sclerosis. This rise in BDNF levels is linked to the healing of lesions, as indicated by studies 95, 97, 98.

In contrast, several investigations have found that during the relapsing phase, the levels of BDNF are typically elevated in peripheral blood mononuclear cells (PBMC) and serum ^{99, 100}. Nevertheless, Azoulay *et al.* discovered a lower concentration of BDNF in the serum of RRMS patients, with no discernible variation between the remission and relapse stages ¹⁰¹. Levels of BDNF in the serum and cerebrospinal fluid (CSF), as well as the production of BDNF by PBMC, are lower in individuals with MS compared to those without the condition ^{102, 103}. Consistent with neuropathological research ^{104,105}, immune cells in patients with relapsing-remitting multiple sclerosis (RRMS) produce more BDNF compared to those with progressive MS. This suggests that the progression of MS may be caused by a lack of neuroprotection and neurorepair capabilities in the presence of persistent injury ^{100, 103}.

Studying the role of BDNF in cognitive deterioration associated with this condition is crucial. This is achieved by comparing patients with Val66Met polymorphism, which reduces BDNF production by 18-30%, to the general population ¹⁰⁶. Multiple sclerosis (MS) prognosis and the rs6265 BDNF single nucleotide polymorphism (SNP) have been the subject of multiple investigations. There may be more processes involved in BDNF gene regulation; however, the results of these studies are inconsistent with one another 107. New research in epigenetics has shown that methylation and other epigenetic mechanisms play a crucial role in controlling many important biological processes. As far as the Expanded Disability Status Scale is concerned, the rs6265 SNP is not indicative of a worse outcome ¹⁰⁸. Regardless of the polymorphism, a lower proportion of methylation in the BDNF gene is associated with a higher chance of significant impairment. A lower probability of achieving an EDSS score of 6.0 is linked with reduced gene suppression, whereas more methylation functions as a gene suppressor. Patients with severe inflammation may benefit from de-methylation therapy, which increases BDNF release and promotes better CNS function. A higher severe impairment score is the usual outcome for these patients due to the rapid depletion of brain functional reserves 108. BDNF methylation is seen as an epiphenomenon of disease activity, specifically neuroinflammation. Therefore, it could be useful in distinguishing

individuals with a greater level of inflammation from those with a lesser level. If these findings are corroborated by additional research, the methylation of BDNF rs6265 polymorphism could serve as a reliable prognostic indicator in multiple sclerosis, enabling early identification of patients with a more severe form of the disease compared to those with a milder form ^{108, 109}.

Role of BDNF in Parkinson's disease

Parkinson's disease (PD) is a multifaceted, long-lasting, very debilitating neurodegenerative disorder and the most rapidly progressing brain ailment globally. The aetiology of Parkinson's disease (PD) remains elusive, while it has been associated with specific hereditary variables and modifiable risk factors such as environmental toxin exposure, insufficient exercise, and low levels of physical activity 110, 111. Both animal and human models have shown that exercise has a physiological effect on gene expression, namely genes related to increased neuronal proliferation, enhanced survival, and decreased inflammatory response 112-114. Physical activity increases the expression of neurotrophins such as nerve growth factor, glia derived neurotrophic factor (GDNF), the formation of GDNFproducing cells (glia), and the activation of BDNF-induced TrkB signaling in lymphocytes ¹¹⁵. Physical activity inhibits the decrease in activity of the BDNF signaling pathways in the substantial nigra and striatum. As a result, it provides protection to dopaminergic neurons in the basal ganglia 116-119 and other regions of the brain such as the bed nucleus of the stria terminalis, septum, cerebellum (nucleus of solitary tract), dentate gyrus of the hippocampus, and cerebral cortex 120, 121. BDNF controls the levels of dopamine and the activity of dopaminergic cells in striatum 122. Conversely, dopaminergic input influences the responsiveness of striatal spiny neurons to BDNF ¹²³. Individuals with Parkinson's disease (PD) have reduced levels of brain-derived neurotrophic factor (BDNF) in the nigrostriatal pathway, in comparison to age-matched individuals without neurological disorders ^{124,125}. This drop in BDNF levels may make the brain more susceptible to degeneration ¹¹². There is a hypothesis that suggests that the rise in circulating BDNF levels caused by exercise could be used as a therapeutic treatment for PD 113.

Conclusion

Although BDNF is present in organs other than the central nervous system (CNS), including the intestines, thymus, spleen, kidneys, lungs, and heart, its effects on the CNS were initially studied, with the hippocampus and frontal cortex exhibiting the highest concentrations of BDNF. Several experimental investigations have indicated that BDNF acts as a marker for the aetiology of various psychiatric illnesses and neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, and schizophrenia.

Numerous surveys have indicated the potential for quantifying its concentrations in different biological specimens, including blood, cerebrospinal fluid, and post-mortem brain tissue. This would provide a better understanding of the disease's activity and prognosis.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Data availability

This article is a narrative review and does not involve new data generation. Any materials, extracted tables, or synthesized information used to support the findings of this review are available from the corresponding author upon reasonable request. This statement supports transparency and good scholarly practice consistent with indexing requirements.

Author Contributions

All authors contributed equally to the conception of the review, literature search, data interpretation, manuscript drafting, and final approval of the paper

All authors meet the ICMJE criteria for authorship and agree to be accountable for all aspects of the work.

ORCID

Suzan Hamza 0009-0008-9522-5849 Namir Haddad 0000-0002-5851-5926 0000-0002-5614-7680 Gheyath AL Gawwam

References

- [1] Kakizawa S. Neurotrophin family. In Handbook of Hormones 2021 Jan 1 (pp. 471-473). Academic Press. https://doi.org/10.1016/B978-0-12-820649-2.00120-0.
- [2] Kowiański, P., Lietzau, G., Czuba, E., Waśkow, M., Steliga, A., & Moryś, J. BDNF: a key factor with multipotent impact on brain signaling and synaptic plasticity. Cell Mol Neurobiol, 2018, 38, 579-593.

https://doi.org/10.1007/s10571-017-0510-4.

[3] Gliwińska, A., Czubilińska-Łada, J., Więckiewicz, G., Świętochowska, E., Badeński, A., Dworak, M., & Szczepańska, M. The role of brain-derived neurotrophic factor (BDNF) in diagnosis and treatment of epilepsy, depression, schizophrenia, anorexia nervosa Alzheimer's disease as highly drug-resistant diseases: a narrative review. Brain Sci., 2023, 13(2), 163.

https://doi.org/10.3390/brainsci13020163.

[4] Miranda, M., Morici, J. F., Zanoni, M. B., & Bekinschtein, P. Brain-derived neurotrophic factor: a key molecule for memory in the healthy and the pathological brain. Front. cell. neurosci., 2019, 13, 472800.

https://doi.org/10.3389/fncel.2019.00363.

[5] Cefis, M., Quirié, A., Pernet, N., Marie, C., Garnier, P., & Prigent-Tessier, A. Brain-derived neurotrophic factor is a full endothelium-derived factor in rats. Vascul Pharmacol, 2020, 128, 106674.

https://doi.org/10.1016/j.vph.2020.106674.

- [6] AlRuwaili R, Al-Kuraishy HM, Al-Gareeb AI, Ali NH, Alexiou A. Papadakis M. Saad HM. Batiha GE. The possible role of brain-derived neurotrophic factors in epilepsy. Neurochemical research. 2024 Mar;49(3):533-47. https://doi.org/10.1007/s11064-023-04064-x.
- [7] Chacón-Fernández, P., Säuberli, K., Colzani, M., Moreau, T., Ghevaert, C., & Barde, Y. A. Brain-derived Neurotrophic Factor in Megakaryocytes. J Biol Chem., 2016, 291(19), 9872-9881.

https://doi.org/10.1074/jbc.m116.720029.

- [8] Calder AE, Hase A, Hasler G. Effects of psychoplastogens on blood levels of brain-derived neurotrophic factor (BDNF) in humans: a systematic review and meta-analysis. Molecular Psychiatry. 2024 Nov 29:1-4.
 - https://doi.org/10.1038/s41380-024-02830-z.
- [9] Lima Giacobbo, B., Doorduin, J., Klein, H. C., Dierckx, R. A., Bromberg, E., & de Vries, E. F. Brain-derived neurotrophic factor in brain disorders: focus on neuroinflammation. Mol neurobiol, 2019, 56, 3295-3312. https://doi.org/10.1007%2Fs12035-018-1283-6.
- [10] Iughetti, L., Lucaccioni, L., Fugetto, F., Predieri, B., Berardi, A., & Ferrari, F. Brain-derived neurotrophic factor and epilepsy: a systematic review. Neuropeptides, 2018,72, 23-

https://doi.org/10.1016/j.npep.2018.09.005.

- [11] Miranda-Lourenço, C., Ribeiro-Rodrigues, L., Fonseca-Gomes, J., Tanqueiro, S. R., Belo, R. F., Ferreira, C. B., ... & Diógenes, M. J. Challenges of BDNF-based therapies: From common to rare diseases. Pharmacol Res, 2020, 162, 105281.
 - https://doi.org/10.1016/j.phrs.2020.105281.
- [12] Iu EC, Chan CB. Is brain-derived neurotrophic factor a metabolic hormone in peripheral tissues? Biology. 2022 Jul 17;11(7):1063.

https://doi.org/10.3390/biology11071063.

- [13] Foltran, R. B., & Diaz, S. L. BDNF isoforms: a round-trip ticket between neurogenesis and serotonin? J neurochem, 2016,138(2), 204-221. https://doi.org/10.1111/jnc.13658.
- [14] Kim J, He MJ, Widmann AK, Lee FS. The role of neurotrophic factors in novels: rapid psychiatric treatments. Neuropsychopharmacology. 2024 Jan;49(1):227-45. https://doi.org/10.1038/s41386-023-01717-x.
- [15] Hernández-del Caño C, Varela-Andrés N, Cebrián-León A, Deogracias R. Neurotrophins and Their Receptors: BDNF's Role in GABAergic Neurodevelopment and Disease. International Journal of Molecular Sciences. 2024 Jul 30;25(15):8312. https://doi.org/10.3390/ijms25158312.
- [16] Chan WS, Ng CF, Pang BP, Hang M, Tse MC, Iu EC, Ooi XC, Yang X, Kim JK, Lee CW, Chan CB. Exercise-induced BDNF promotes PPARδ-dependent reprogramming of lipid metabolism in skeletal muscle during exercise recovery. Science signaling. 2024 Mar 19;17(828): eadh2783. https://doi.org/10.1126/scisignal.adh2783

- [17] Villarroel-Campos D, Rhymes ER, Tosolini AP, Malik B, Vagnoni A, Schiavo G, Sleigh JN. Processivity and BDNFdependent modulation of signalling endosome axonal transport are impaired in aged mice. bioRxiv. 2025:2025-01. https://doi.org/10.1101/2025.01.30.635507.
- [18] Shen B, Wu Z, Lv M, Yang G, Cao Y, Zhang Y, Shu J, Dong W, Hou Z, Jing D, Zhang X. Methamphetamine inhibits huntingtin-associated protein 1-mediated tyrosine receptor kinase B endocytosis resulting the neuroprotective dysfunction of brain-derived neurotrophic factor. Toxicology. 2025 Jan 10:154047. https://doi.org/10.1016/j.tox.2025.154047.
- [19] Eun Lee Y, Lee SH, Kim WU. Cytokines, vascular endothelial growth factors, and PIGF in autoimmunity: insights from rheumatoid arthritis to multiple sclerosis. Immune Network. 2024 Feb;24(1). https://doi.org/10.4110/in.2024.24.e10.
- [20] Matthews, V. B., Åström, M. B., Chan, M. H. S., Bruce, C. R., Krabbe, K. S., Prelovsek, O., ... & Febbraio, M. A. Brainderived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia, 2015, 52, 1409-1418. https://doi.org/10.1007/s00125-015-3502-2.
- [21] Zou J, Hao S. A potential research target for cardiac rehabilitation: brain-derived neurotrophic factor. Frontiers in Cardiovascular Medicine. 2024 Apr 19; 11:1348645. https://doi.org/10.3389/fcvm.2024.1348645.
- [22] Feng X, Ma X, Li J, Zhou Q, Liu Y, Song J, Liu J, Situ Q, Wang L, Zhang J, Lin F. Inflammatory pathogenesis of post-stroke depression. Aging and disease. 2024 Feb 3;16(1):209. https://doi.org/10.14336/AD.2024.0203.
- [23] Giannopoulou, I., Pagida, M. A., Briana, D. D., & Panayotacopoulou, M. T. Perinatal hypoxia as a risk factor for psychopathology later in life: the role of dopamine and neurotrophins. Hormones, 2018,17, 25-32. https://doi.org/10.1007/s42000-018-0007-7.
- [24] Lippi, G., Mattiuzzi, C., & Sanchis-Gomar, F. Updated overview on interplay between physical exercise, neurotrophins, and cognitive function in humans. J Sport Health Sci, 2020,9(1), 74-81. https://doi.org/10.1016/j.jshs.2019.07.012.
- [25] Thomas, A. X., Del Angel, Y. C., Gonzalez, M. I., Carrel, A. J., Carlsen, J., Lam, P. M., & Brooks-Kayal, A. R. Rapid increases in proBDNF after pilocarpine-induced status epilepticus in mice are associated with reduced proBDNF cleavage machinery. eneuro, 2016,3(1). https://doi.org/10.1523/eneuro.0020-15.2016.
- [26] Weickert C, Chandra J, Zhu Y, Petty A, Kostoglou Y, Haynes W, Webster M. Transcriptional evidence of reduced BDNF trophic signaling capacity in the post-mortem human midbrain of schizophrenia cases with high inflammation.2024. https://doi.org/10.21203/rs.3.rs-4654926/v1.

- [27] Johnstone, A., & Mobley, W. Local TrkB signaling: themes in development and neural plasticity. Cell tissue Res, 2020, 382, 101-111. https://doi.org/10.1007/s00441-020-03278-7.
- [28] Przybylska I, Marusiak J, Toczyłowska B, Stępień A, Brodacki B, Langfort J, Chalimoniuk M. Association between the Val66Met (rs6265) polymorphism of the brain-derived neurotrophic factor (BDNF) gene, BDNF protein level in the blood and the risk of developing early onset Parkinson's disease. Acta Neurobiologiae Experimentalis. 2024 Oct 11;84(3):296-308. https://doi.org/10.3389/fneur.2024.1465715.
- [29] Sydney Smith JD, Megaro V, Spejo AB, Moon LD. An Adeno-Associated Viral vector encoding Neurotrophin 3 injected into affected forelimb muscles modestly improves sensorimotor function after contusive mid-cervical spinal cord injury. BioRxiv. 2021 Feb 25:2021-02. https://doi.org/10.1101/2021.02.24.432676.
- [30] Tao J, Li J, Fan X, Jiang C, Wang Y, Qin M, Nikfard Z, Nikfard F, Wang Y, Zhao T, Xing N. Unraveling the protein post-translational modification landscape: Neuroinflammation and neuronal death after stroke. Ageing Research Reviews. 2024 Sep 12:102489. https://doi.org/10.1016/j.arr.2024.102489.
- [31] Zhang J, Kwan HL, Chan CB, Lee CW. Localized release of muscle-generated BDNF regulates the initial formation of postsynaptic apparatus at neuromuscular synapses. Cell Death & Differentiation. 2024 Nov 7:1-5. https://doi.org/10.1038/s41418-024-01404-4.
- [32] Stachowicz K. Interactions between metabotropic glutamate and CB1 receptors: implications for mood, cognition, and synaptic signaling based on data from mGluR and CB1R-targeting drugs. Pharmacological Reports. 2024 Dec;76(6):1286-96. https://doi.org/10.1007/s43440-024-00612-6.
- [33] Maiworm M. The relevance of BDNF for neuroprotection and neuroplasticity in multiple sclerosis. Frontiers in Neurology. 2024 Aug 1;15:1385042. https://doi.org/10.3389/fneur.2024.1385042
- [34] Han J, Park H. Recycling of endocytic BDNF through extracellular vesicles in astrocytes. Scientific Reports. 2025 Jan 15;15(1):2011.
 - https://doi.org/10.1038/s41598-025-86200-x.
- [35] Park, H., & Poo, M. M. Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci, 2013, 14(1), 7-23. https://doi.org/10.1038/nrn3379.
- [36] Madhubala D, Mahato R, Khan MR, Bala A, Mukherjee AK. Neurotrophin peptidomimetics for the treatment of neurodegenerative diseases. Drug Discovery Today. 2024 Sep 2:104156. https://doi.org/10.1016/j.drudis.2024.104156.
- [37] Zagrebelsky, M., Tacke, C., & Korte, M. BDNF signaling during the lifetime of dendritic spines. Cell Tissue Res, 2020,382, 185-199.

- https://doi.org/10.1007/s00441-020-03226-5.
- [38] Schulze J, Staecker H, Wedekind D, Lenarz T, Warnecke A. Expression pattern of brain-derived neurotrophic factor and its associated receptors: Implications for exogenous neurotrophin application. Hearing Research. 2022 Jan 1; 413:108098.
 - https://doi.org/10.1016/j.heares.2020.108098.
- [39] Ibáñez, C. F., & Simi, A. p75 neurotrophin receptor signaling in nervous system injury and degeneration: paradox and opportunity. Trends in neurosci, 2012, 35(7), 431-440. https://doi.org/10.1016/j.tins.2012.03.007.
- [40] Edelmann, E., Leßmann, V., & Brigadski, T. Pre-and postsynaptic twists in BDNF secretion and action in synaptic plasticity. Neuropharmacology, 2014, 76, 610-627. https://doi.org/10.1016/j.neuropharm.2013.05.043.
- [41] Kiuchi M, Uno T, Hasegawa T, Koyama K, Horiuchi M. Influence of short-term hypoxic exposure on spatial learning and memory function and brain-derived neurotrophic factor in rats—A practical implication to human's lost way. Frontiers in Behavioral Neuroscience. 2024 Feb 6; 18:1330596.
 - https://doi.org/10.3389/fnbeh.2024.1330596.
- [42] Brigadski, T., & Leßmann, V. BDNF: a regulator of learning and memory processes with clinical potential. e-Neuroforum, 2014,20(1), 1-11. https://doi.org/10.1007/s13295-014-0053-9.
- [43] Luo, Y., Kuang, S., Li, H., Ran, D., & Yang, J. cAMP/PKA-CREB-BDNF signaling pathway in hippocampus mediates cyclooxygenase 2-induced learning/memory deficits of rats subjected to chronic unpredictable mild stress. Oncotarget,2017, 8(22), 35558. https://doi.org/10.18632/oncotarget.16009.
- [44] Loprinzi, P. D., & Frith, E. A brief primer on the mediational role of BDNF in the exercise-memory link. Clin physiol Funct Imaging,2019, 39(1), 9-14. https://doi.org/10.1111/cpf.12522.
- [45] Yang, C., Li, T., & Xue, H. Inhibition of necroptosis rescues SAH-induced synaptic impairments in hippocampus via CREB-BDNF pathway. Front Neurosci 2018,12: 990. https://doi.org/10.3389/fnins.2018.00990.
- [46] NaPier E, Camacho M, McDevitt TF, Sweeney AR. Neurotrophic keratopathy: current challenges and future prospects. Annals of medicine. 2022 Dec 31;54(1):666-73. https://doi.org/10.1080/07853890.2022.2045035.
- [47] Olivo G, Persson J, Hedenius M. Exploring brain plasticity in developmental dyslexia through implicit sequence learning. npj Science of Learning. 2024 May 27;9(1):37. https://doi.org/10.1038/s41539-024-00250-w.
- [48] Banerjee M, Shenoy RR. Emphasizing roles of BDNF promoters and inducers in Alzheimer's disease for improving impaired cognition and memory. Journal of Basic and Clinical Physiology and Pharmacology. 2023 Mar 16;34(2):125-36. https://doi.org/10.1515/jbcpp-2021-0182.

- [49] Lima Giacobbo, B., Doorduin, J., Klein, H. C., Dierckx, R. A., Bromberg, E., & de Vries, E. F. Brain-derived neurotrophic factor in brain disorders: focus on neuroinflammation. Mol neurobiol,2019, 56, 3295-3312. https://doi.org/10.1007/s12035-018-1283-6.
- [50] Pisani, A., Paciello, F., Del Vecchio, V., Malesci, R., De Corso, E., Cantone, E., & Fetoni, A. R. The role of BDNF as a biomarker in cognitive and sensory neurodegeneration. J Pers Med ,12023,3(4), 652. https://doi.org/10.3390/jpm13040652.
- [51] Duman RS, Deyama S, Fogaça MV. Role of BDNF in the pathophysiology and treatment of depression: Activity-dependent effects distinguish rapid-acting antidepressants. European Journal of Neuroscience. 2021 Jan;53(1):126-39. https://doi.org/10.1111/ejn.14630.
- [52] Cavaleri D, Moretti F, Bartoccetti A, Mauro S, Crocamo C, Carrà G, Bartoli F. The role of BDNF in major depressive disorder, related clinical features, and antidepressant treatment: Insight from meta-analyses. Neuroscience & Biobehavioral Reviews. 2023 Jun 1; 149:105159. https://doi.org/10.1016/j.neubiorev.2023.105159.
- [53] Miyanishi H, Nitta A. A role of BDNF in the depression pathogenesis and a potential target as antidepressant: the modulator of stress sensitivity "Shati/Nat8I-BDNF system" in the dorsal striatum. Pharmaceuticals. 2021 Sep 1;14(9):889.
 - https://doi.org/10.3390/ph14090889.
- [54] Lei L, Wang YF, Chen CY, Wang YT, Zhang Y. Novel insight into astrocyte-mediated gliotransmission modulates the synaptic plasticity in major depressive disorder. Life Sciences. 2024 Aug 15:122988. https://doi.org/10.1016/j.lfs.2024.122988.
- [55] Gaynes BN, Lux L, Gartlehner G, Asher G, Forman-Hoffman V, Green J, Boland E, Weber RP, Randolph C, Bann C, Coker-Schwimmer E. Defining treatment-resistant depression. Depression and anxiety. 2020 Feb;37(2):134-45. https://doi.org/10.1002/da.22968.
- [56] Liu X, Li P, Ma X, Zhang J, Sun X, Luo X, Zhang Y. Association between plasma levels of BDNF and GDNF and the diagnosis, treatment response in first-episode MDD. Journal of Affective Disorders. 2022 Oct 15;315:190-7. https://doi.org/10.1016/j.jad.2022.07.041.
- [57] La Marca R, Scheiwiller M, Pfaff M, La Marca-Ghaemmaghami P, Böker H. Plasma BDNF in burnout-related depressive disorders: The mediating role of perceived social isolation and the biopsychological effect of a multimodal inpatient treatment. Journal of Affective Disorders Reports. 2025 Feb 11:100880. https://doi.org/10.1016/j.jadr.2025.100880.
- [58] Suárez-Cuenca JA, Campos-Nolasco NP, Rodríguez-Ayala E, Zepeda-Làmbarry AD, Ochoa-Madrigal MG, Maldonado-Tapia D, Vera-Gómez E, Hernández-Patricio A, Martínez-Torres G, Bernal-Figueroa Y, Pineda-Juárez JA. Plasma brain-derived neurotrophic factor before hemodialysis reduces the risk of depression in patients with chronic renal

- failure. Renal Failure. 2025 Dec 31;47(1):2463561. https://doi.org/10.1080/0886022X.2025.2463561.
- [59] Yeboah K, Gyamfi T, Agyekum JA. Severe depression is associated with decreased levels of serum brain-derived neurotrophic factor in type 2 diabetes patients in Ghana. Alexandria Journal of Medicine. 2024 Dec 31;60(1):17-25. https://doi.org/10.1080/20905068.2024.2314796.
- [60] Allen, A. P., Naughton, M., Dowling, J., Walsh, A., Ismail, F., Shorten, G., ... & Clarke, G. Serum BDNF as a peripheral biomarker of treatment-resistant depression and the rapid antidepressant response: a comparison of ketamine and ECT. J Affect Disord, 2015,186, 306-311.
 - https://doi.org/10.1016/j.jad.2015.06.033.
- [61] Dell'Oste V, Palego L, Betti L, Fantasia S, Gravina D, Bordacchini A, Pedrinelli V, Giannaccini G, Carmassi C. Plasma and Platelet Brain-Derived Neurotrophic Factor (BDNF) Levels in Bipolar Disorder Patients with Post-Traumatic Stress Disorder (PTSD) or in a Major Depressive Episode Compared to Healthy Controls. International Journal of Molecular Sciences. 2024 Mar 20;25(6):3529. https://doi.org/10.3390/ijms25063529.
- [62] Pandey GN, Dwivedi Y, Rizavi HS, Ren X, Zhang H, Pavuluri MN. Brain-derived neurotrophic factor gene and protein expression in pediatric and adult depressed subjects. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2010 May 30;34(4):645-51. https://doi.org/10.1016/j.pnpbp.2010.03.003.
- [63] Serra-Millàs, M., López-Vílchez, I., Navarro, V., Galán, A. M., Escolar, G., Penadés, R., & Gastó, C. Changes in plasma and platelet BDNF levels induced by S-citalopram in major depression. Psychopharmacology, 2011,216, 1-8. https://doi.org/10.1007/s00213-011-2180-0.
- [64] Wisłowska-Stanek A, Kołosowska K, Maciejak P. Neurobiological basis of increased risk for suicidal behaviour. Cells. 2021 Sep 23;10(10):2519.
- [65] Pandey, G. N., Ren, X., Rizavi, H. S., Conley, R. R., Roberts, R. C., & Dwivedi, Y. Brain-derived neurotrophic factor and tyrosine kinase B receptor signalling in post-mortem brain of teenage suicide victims. Int J Neuropsychopharmacology, 2008,11(8), 1047-1061.
 - https://doi.org/10.1017/s1461145708009000.
- [66] Hosang, G. M., Shiles, C., Tansey, K. E., McGuffin, P., & Uher, R. Interaction between stress and the BDNF Val66Met polymorphism in depression: a systematic review and metaanalysis. BMC medicine,2014, 12, 1-11. https://doi.org/10.1186/1741-7015-12-7.
- [67] Li, M., Du, W., Shao, F., & Wang, W. Cognitive dysfunction and epigenetic alterations of the BDNF gene are induced by social isolation during early adolescence. Behav Brain Res, 2016,313,177-183.
 - https://doi.org/10.1016/j.bbr.2016.07.025.
- [68] Ramesh, V., Venkatesan, V., Chellathai, D., & Silamban, S. Association of serum biomarker levels and BDNF gene polymorphism with response to selective serotonin reuptake

- inhibitors in Indian patients with major depressive disorder. Neuropsychobiology, 2021,80(3), 201-213. https://doi.org/10.1159/000507371.
- [69] de Assis, G. G., & Almondes, K. M. D. Exercise-dependent BDNF as a modulatory factor for the executive processing of individuals in course of cognitive decline. A systematic review. Front psychol,2017, 8, 254106. https://doi.org/10.3389/fpsyg.2017.00584.
- [70] Casarotto P, Umemori J, Castrén E. BDNF receptor TrkB as the mediator of the antidepressant drug action. Frontiers in Molecular Neuroscience. 2022 Nov 2; 15:1032224. https://doi.org/10.3389/fnmol.2022.1032224.
- [71] Crispino, M., Volpicelli, F., & Perrone-Capano, C. Role of the serotonin receptor 7 in brain plasticity: From development to disease. Int J Mol Sci, 2020,21(2), 505. https://doi.org/10.3390/ijms21020505.
- [72] Legge SE, Santoro ML, Periyasamy S, Okewole A, Arsalan A, Kowalec K. Genetic architecture of schizophrenia: a review of major advancements. Psychological medicine. 2021 Oct;51(13):2168-77. https://doi.org/10.1017/S0033291720005334.
- [73] Ahmad, R., Azman, K. F., Yahaya, R., Shafin, N., Omar, N., Ahmad, A. H., & Othman, Z. Brain-derived neurotrophic factor (BDNF) in schizophrenia research: a quantitative review and future directions. AIMS neurosci, 2023,10(1), 5. https://doi.org/10.3934/neuroscience.2023002.
- [74] Atake, K., Nakamura, T., Ueda, N., Hori, H., Katsuki, A., & Yoshimura, R. The impact of aging, psychotic symptoms, medication, and brain-derived neurotrophic factor on cognitive impairment in Japanese chronic schizophrenia patients. Front psychiatry, 2018,9, 346307. https://doi.org/10.3389/fpsyt.2018.00232.
- [75] Bora, E. Peripheral inflammatory and neurotrophic biomarkers of cognitive impairment in schizophrenia: a meta-analysis. Psychol Med, 2019,49(12), 1971-1979. https://doi.org/10.1017/s0033291719001685.
- [76] Ahmed, A. O., Mantini, A. M., Fridberg, D. J., & Buckley, P. F. Brain-derived neurotrophic factor (BDNF) and neurocognitive deficits in people with schizophrenia: a metaanalysis. Psychiatry Res, 2015, 226(1), 1-13. https://doi.org/10.1016/j.psychres.2014.12.069.
- [77] Schweiger, J. I., Bilek, E., Schäfer, A., Braun, U., Moessnang, C., Harneit, A., ... & Tost, H. Effects of BDNF Val66Met genotype and schizophrenia familial risk on a neural functional network for cognitive control in humans. Neuropsychopharmacology, 2019, 44(3), 590-597. https://doi.org/10.1038/s41386-018-0248-9.
- [78] Nieto, R. R., Carrasco, A., Corral, S., Castillo, R., Gaspar, P. A., Bustamante, M. L., & Silva, H. BDNF as a biomarker of cognition in schizophrenia/psychosis: an updated review. Front Psychiatry, 2021, 12, 662407. https://doi.org/10.3389/fpsyt.2021.662407.
- [79] Gustavsson, A., Norton, N., Fast, T., Frölich, L., Georges, J., Holzapfel, D., & van der Flier, W. M. Global estimates on

- the number of persons across the Alzheimer's disease continuum. Alzheimer's Dement, 2023,19(2), 658-670. https://doi.org/10.1002/alz.12694.
- [80] Busche, M. A., & Hyman, B. T. Synergy between amyloid- β and tau in Alzheimer's disease. Nat neurosci, 2020, 23(10), 1183-1193.
 - https://doi.org/10.1038/s41593-020-0687-6.
- [81] Gao, L., Zhang, Y., Sterling, K., & Song, W. Brain-derived neurotrophic factor in Alzheimer's disease and its pharmaceutical potential. Transl Neurodegener, 2022,11(1), 4.
 - https://doi.org/10.1186/s40035-022-00279-0.
- [82] Alqahtani SM, Al-Kuraishy HM, Al Gareeb AI, Albuhadily AK, Alexiou A, Papadakis M, Hemeda LR, Faheem SA, El-Saber Batiha G. Unlocking Alzheimer's Disease: The Role of BDNF Signaling in Neuropathology and Treatment. NeuroMolecular Medicine. 2025 May 17;27(1):36. https://doi.org/10.1007/s12017-025-08857-x
- [83] Ng, T. K. S., Ho, C. S. H., Tam, W. W. S., Kua, E. H., & Ho, R. C. M. Decreased serum brain-derived neurotrophic factor (BDNF) levels in patients with Alzheimer's disease (AD): a systematic review and meta-analysis. Int J Mol Sci, 2019,20(2), 257. https://doi.org/10.3390/ijms20020257.
- [84] Du, Y., Wu, H. T., Qin, X. Y., Cao, C., Liu, Y., Cao, Z. Z., & Cheng, Y. Postmortem brain, cerebrospinal fluid, and blood neurotrophic factor levels in Alzheimer's disease: a systematic review and meta-analysis. J Mol Neurosci,2018, 65, 289-300.
 - https://doi.org/10.1007/s12031-018-1100-8.
- [85] Bhatt S, Nagappa AN, Patil CR. Role of oxidative stress in depression. Drug discovery today. 2020 Jul 1;25(7):1270-6. https://doi.org/10.1016/j.drudis.2020.05.001
- [86] Xie, B., Zhou, H., Liu, W., Yu, W., Liu, Z., Jiang, L., & Xu, S. Evaluation of the diagnostic value of peripheral BDNF levels for Alzheimer's disease and mild cognitive impairment: results of a meta-analysis. Int J Neurosci, 2020,130(3), 218-230. https://doi.org/10.1080/00207454.2019.1667794.
- [87] Koch-Henriksen, N., & Magyari, M. Apparent changes in the epidemiology and severity of multiple sclerosis. Nat Rev Neurol, 2021, 17(11), 676-688. https://doi.org/10.1038/s41582-021-00556-y.
- [88] Abdulkarim, M. M., & Da'ad, A. H. Role of BIRC5 gene polymorphisms with serum level of Survivin in Iraqi patients with multiple sclerosis. IJB,2023, 22(1).
- [89] Shamsnia HS, Peyrovinasab A, Amirlou D, Sirouskabiri S, Rostamian F, Basiri N, Shalmani LM, Hashemi M, Hushmandi K, Abdolghaffari AH. BDNF-TrkB Signaling Pathway in Spinal Cord Injury: Insights and Implications. Molecular Neurobiology. 2024 Jul 24:1-41. https://doi.org/10.1007/s12035-024-04381-4.
- [90] Alabassi, H. M. K., Kadri, Z. H. M., Ismail, H. Q., Kadem, Y. J., & Rahman, H. K. Comparative Study of Multiple

- Sclerosis Therapy by Interferon-β and Methylprednisolone of Iraqi Patients via Adenosine Deaminase Activity.
- [91] Issa S, Fayoud H, Shaimardanova A, Sufianov A, Sufianova G, Solovyeva V, Rizvanov A. Growth factors and their application in the therapy of hereditary neurodegenerative diseases. Biomedicines. 2024 Aug 20;12(8):1906. https://doi.org/10.3390/biomedicines12081906.
- [92] Ad'hiah AH, Al-naseri MA, Zahra'a AA, Salman ED, Al-saffar OB, Ahmed HS, Hussain TA, Idan EM. Cytokine gene variations and their impact on serum levels of IFN-γ, IL-2, IL-4, IL-10 and IL-12 among Iraqi Arabs. Meta Gene. 2019 Feb 1; 19:98-103.
 - https://doi.org/10.1016/j.mgene.2018.11.005.
- [93] Sikandar, S., Minett, M. S., Millet, Q., Santana-Varela, S., Lau, J., Wood, J. N., & Zhao, J. Brain-derived neurotrophic factor derived from sensory neurons plays a critical role in chronic pain. Brain, 2018,141(4), 1028-1039. https://doi.org/10.1093/brain/awy009.
- [94] Oraby, M. I., El Masry, H. A., Abd El Shafy, S. S., & Abdul Galil, E. M. Serum level of brain-derived neurotrophic factor in patients with relapsing–remitting multiple sclerosis: A potential biomarker for disease activity. The EGNS, 2021,57, 1-8. https://doi.org/10.1186/s41983-021-00296-2.
- [95] Karimi, N., Ashourizadeh, H., Pasha, B. A., Haghshomar, M., Jouzdani, T., Shobeiri, P., & Rezaei, N. Blood levels of brain-derived neurotrophic factor (BDNF) in people with multiple sclerosis (MS): A systematic review and meta-analysis. Mult Scler Relat Disord, 2022, 65, 103984. https://doi.org/10.1016/j.msard.2022.103984
- [96] Portaccio, E., Bellinvia, A., Prestipino, E., Nacmias, B., Bagnoli, S., Razzolini, L., & Amato, M. P. The brain-derived neurotrophic factor Val66Met polymorphism can protect against cognitive impairment in multiple sclerosis. Front Neurol, 2021,12, 645220. https://doi.org/10.3389/fneur.2021.645220.
- [97] Nociti, V. What is the role of Brain derived neurotrophic factor in Multiple Sclerosis neuroinflammation. Neuroimmunol., 2020,7(3), 291-299. https://doi.org/10.20517/2347-8659.2020.25.
- [98] Oraby MI, El Masry HA, Abd El Shafy SS, Abdul Galil EM. Serum level of brain-derived neurotrophic factor in patients with relapsing–remitting multiple sclerosis: A potential biomarker for disease activity. The Egyptian Journal of Neurology, Psychiatry and Neurosurgery. 2021 Dec; 57:1-8. https://doi.org/10.1186/s41983-021-00296-2.
- [99] Yalachkov Y, Anschütz V, Jakob J, Schaller-Paule MA, Schäfer JH, Reiländer A, Friedauer L, Behrens M, Steffen F, Bittner S, Foerch C. Brain-derived neurotrophic factor and neurofilament light chain in cerebrospinal fluid are inversely correlated with cognition in Multiple Sclerosis at the time of diagnosis. Multiple Sclerosis and Related Disorders. 2022 Jul 1; 63:103822.
 - https://doi.org/10.1016/j.msard.2022.103822

- [100] Wang N, Tian B. Brain derived neurotrophic factor in autoimmune inflammatory diseases. Experimental and Therapeutic Medicine. 2021 Nov 1;22(5):1-7. https://doi.org/10.3892/etm.2021.10727.
- [101] Azoulay, D., Vachapova, V., Shihman, B., Miler, A., & Karni, A. Lower brain-derived neurotrophic factor in serum of relapsing remitting MS: reversal by glatiramer acetate. J neuroimmunol,2005, 167(1-2), 215-218.

https://doi.org/10.1016/j.jneuroim.2005.07.001.

- [102] Farhangian M, Azarafrouz F, Valian N, Dargahi L. The role of interferon beta in neurological diseases and its potential therapeutic relevance. European Journal of Pharmacology. 2024 Aug 10:176882. https://doi.org/10.1016/j.ejphar.2024.176882.
- [103] Voigt I, Fischer S, Proschmann U, Konofalska U, Richter P, Schlieter H, Berger T, Meuth SG, Hartung HP, Akgün K, Ziemssen T. Consensus quality indicators for monitoring multiple sclerosis. The Lancet Regional Health–Europe. 2024 May 1;40.
- [104] Simkins TJ, Duncan GJ, Bourdette D. Chronic demyelination and axonal degeneration in multiple sclerosis: pathogenesis and therapeutic implications. Current neurology and neuroscience reports. 2021 Jun; 21:1-1. https://doi.org/10.1007/s11910-021-01110-5.

https://doi.org/10.1016/j.lanepe.2024.100891.

[105] Fletcher, J. L., Wood, R. J., Nguyen, J., Norman, E. M., Jun, C. M., Prawdiuk, A. R., & Murray, S. S. Targeting TrkB with a brain-derived neurotrophic factor mimetic promotes myelin repair in the brain. J Neurosci, 2018,38(32), 7088-7099.

https://doi.org/10.1523/jneurosci.0487-18.2018.

- [106] Shen, T., You, Y., Joseph, C., Mirzaei, M., Klistorner, A., Graham, S. L., & Gupta, V. BDNF polymorphism: a review of its diagnostic and clinical relevance in neurodegenerative disorders. Aging Dis, 2018,9(3), 523. https://doi.org/10.14336/ad.2017.0717.
- [107] Nociti, V., Santoro, M., Quaranta, D., Losavio, F. A., De Fino, C., Giordano, R., & Mirabella, M. BDNF rs6265 polymorphism methylation in Multiple Sclerosis: A possible marker of disease progression. PLoS One, 2018,13(10), e0206140.

https://doi.org/10.1371/journal.pone.0206140.

- [108] Nociti, V., Santoro, M., Quaranta, D., Losavio, F. A., De Fino, C., Giordano, R., ... & Mirabella, M. Correction: BDNF rs6265 polymorphism methylation in Multiple Sclerosis: A possible marker of disease progression. Plos one, 2019,14(2), e0212906. https://doi.org/10.1371/journal.pone.0212906.
- [109] Li, S., Ritz, B., Gong, Y., Cockburn, M., Folle, A. D., Del Rosario, I., & Paul, K. C. Proximity to residential and workplace pesticides application and the risk of progression of Parkinson's diseases in Central California. Sci Total Environ,2023, 864, 160851

https://doi.org/10.1016/j.scitotenv.2022.160851.

- [110] Yoon SY, Suh JH, Yang SN, Han K, Kim YW. Association of physical activity, including amount and maintenance, with all-cause mortality in Parkinson disease. JAMA neurology. 2021 Dec 1;78(12):1446-53. 10.1001/jamaneurol.2021.3926.
- [111] Szuhany, K. L., Bugatti, M., & Otto, M. W. A metaanalytic review of the effects of exercise on brain-derived neurotrophic factor. J Psychiatr Res, 2015,60, 56-64. https://doi.org/10.1016/j.jpsychires.2014.10.003.
- [112] Palasz, E., Wysocka, A., Gasiorowska, A., Chalimoniuk, M., Niewiadomski, W., & Niewiadomska, G. BDNF as a promising therapeutic agent in Parkinson's disease. Int J Mol Sci, 2020,21(3), 1170 https://doi.org/10.3390/ijms21031170.
- [113] Freidle M, Johansson H, Ekman U, Lebedev AV, Schalling E, Thompson WH, Svenningsson P, Lövdén M, Abney A, Albrecht F, Steurer H. Behavioural and neuroplastic effects of a double-blind randomised controlled balance exercise trial in people with Parkinson's disease. npj Parkinson's Disease. 2022 Jan 21;8(1):12.

https://doi.org/10.1038/s41531-021-00269-5.

- [114] Fontanesi, C., Kvint, S., Frazzitta, G., Bera, R., Ferrazzoli, D., Di Rocco, A., & Ghilardi, M. F. Intensive rehabilitation enhances lymphocyte BDNF-TrkB signaling in patients with Parkinson's disease. Neurorehabil Neural repair, 2016,30(5), 411-418.
 - https://doi.org/10.1177%2F1545968315600272.
- [115] Kuo CW, Chang MY, Chou MY, Pan CY, Peng CW, Tseng HC, Jen TY, He XK, Liu HH, Nguyen TX, Chang PK. Long-term motor cortical electrical stimulation ameliorates 6-hydroxydopamine-induced motor dysfunctions and exerts neuroprotective effects in a rat model of Parkinson's disease. Frontiers in Aging Neuroscience. 2022 Feb 16; 14:848380. https://doi.org/10.3389/fnagi.2022.848380.
- [116] Real, C. C., Ferreira, A. F. B., Chaves-Kirsten, G. P., Torrão, A. D. S., Pires, R. S., & Britto, L. R. G. D. BDNF receptor blockade hinders the beneficial effects of exercise in a rat model of Parkinson's disease. Neuroscience, 2013,237, 118-129.

https://doi.org/10.1016/j.neuroscience.2013.01.060

[117] Stahl, K., Mylonakou, M. N., Skare, Ø., Amiry-Moghaddam, M., & Torp, R. Cytoprotective effects of growth factors: BDNF more potent than GDNF in an organotypic culture model of Parkinson's disease. Brain Res, 2011,1378, 105-118.

https://doi.org/10.1016/j.brainres.2010.12.090.

- [118] Barker RA, Saarma M, Svendsen CN, Morgan C, Whone A, Fiandaca MS, Luz M, Bankiewicz KS, Fiske B, Isaacs L, Roach A. Neurotrophic factors for Parkinson's disease: Current status, progress, and remaining questions. Conclusions from a 2023 workshop. Journal of Parkinson's Disease. 2024 Dec 27:1877718X241301041. https://doi.org/10.1177/1877718X241301041.
- [119] Li H, Cao Y, Ye J, Yang Z, Chen Q, Liu X, Zhang B, Qiao J, Tang Q, Yang H, Li J. Engineering brain-derived

neurotrophic factor mRNA delivery for the treatment of Alzheimer's disease. Chemical Engineering Journal. 2023 Jun 15; 466:143152.

https://doi.org/10.1016/j.cej.2023.143152

[120] Sujkowski A, Hong L, Wessells RJ, Todi SV. The protective role of exercise against age-related neurodegeneration. Ageing Research Reviews. 2022 Feb 1; 74:101543.

https://doi.org/10.1016/j.arr.2021.101543.

[121] Ferreira, R. N., de Miranda, A. S., Rocha, N. P., Simoes e Silva, A. C., Teixeira, A. L., & da Silva Camargos, E. R. Neurotrophic factors in Parkinson's disease: what have we learned from pre-clinical and clinical studies? Curr Med Chem, 2018,25(31), 3682-3702.

https://doi.org/10.2174/0929867325666180313101536.

[122] Ayon-Olivas, M., Wolf, D., Andreska, T., Granado, N., Lüningschrör, P., Ip, C. W., & Sendtner, M. Dopaminergic input regulates the sensitivity of indirect pathway striatal spiny neurons to brain-derived neurotrophic factor. Biology, 2023,12(10), 1360.

https://doi.org/10.3390/biology12101360.

[123] Er S, Airavaara M. Protective mechanisms by glial cell line-derived neurotrophic factor and cerebral dopamine neurotrophic factor against the α-synuclein accumulation in Parkinson's disease. Biochemical Society Transactions. 2023 Feb 27;51(1):245-57.

https://doi.org/10.1042/BST20220770.

- [124] Chen, Z., & Zhang, H. A meta-analysis on the role of brain-derived neurotrophic factor in Parkinson's disease patients. Adv Clin Exp Med, 2023,32(3), 285-295. https://doi.org/10.17219/acem/154955
- [125] Gao Z, Pang Z, Lei G, Chen Y, Cai Z, Zhu S, Lin W, Qiu Z, Wang Y, Shen Y, Xu W. Crossing nerve transfer drives sensory input-dependent plasticity for motor recovery after brain injury. Science Advances. 2022 Aug 31;8(35): eabn5899.

https://doi.org/10.1126/sciadv.abn5899.